Monaural Deprivation Disrupts Development of Binaural Selectivity in Auditory Midbrain and Cortex

نویسندگان

  • Maria V. Popescu
  • Daniel B. Polley
چکیده

Degraded sensory experience during critical periods of development can have adverse effects on brain function. In the auditory system, conductive hearing loss associated with childhood ear infections can produce long-lasting deficits in auditory perceptual acuity, much like amblyopia in the visual system. Here we explore the neural mechanisms that may underlie "amblyaudio" by inducing reversible monaural deprivation (MD) in infant, juvenile, and adult rats. MD distorted tonotopic maps, weakened the deprived ear's representation, strengthened the open ear's representation, and disrupted binaural integration of interaural level differences (ILD). Bidirectional plasticity effects were strictly governed by critical periods, were more strongly expressed in primary auditory cortex than inferior colliculus, and directly impacted neural coding accuracy. These findings highlight a remarkable degree of competitive plasticity between aural representations and suggest that the enduring perceptual sequelae of childhood hearing loss might be traced to maladaptive plasticity during critical periods of auditory cortex development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief hearing loss disrupts binaural integration during two early critical periods of auditory cortex development

Early binaural experience can recalibrate central auditory circuits that support spatial hearing. However, it is not known how binaural integration matures shortly after hearing onset or whether various developmental stages are differentially impacted by disruptions of normal binaural experience. Here we induce a brief, reversible unilateral conductive hearing loss (CHL) at several experimental...

متن کامل

Synaptic mechanisms underlying interaural level difference selectivity in rat auditory cortex.

The interaural level difference (ILD) is a sound localization cue that is extensively processed in the auditory brain stem and midbrain and is also represented in the auditory cortex. Here, we asked whether neurons in the auditory cortex passively inherit their ILD tuning from subcortical sources or whether their spiking preferences were actively shaped by local inhibition. If inherited, the IL...

متن کامل

Development of functional organization of the pallid bat auditory cortex.

The primary auditory cortex is characterized by a tonotopic map and a clustered organization of binaural properties. The factors involved in the development of overlain representation of these two properties are unclear. We addressed this issue in the auditory cortex of the pallid bat. The adult pallid bat cortex contains a systematic relationship between best frequency (BF) and binaural proper...

متن کامل

Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex.

We report evidence for a context- and not stimulus-dependent functional asymmetry in the left and right human auditory midbrain, thalamus, and cortex in response to monaural sounds. Neural activity elicited by left- and right-ear stimulation was measured simultaneously in the cochlear nuclei, inferior colliculi (ICs), medial geniculate bodies (MGBs), and auditory cortices (ACs) in 2 functional ...

متن کامل

Dichotic sound localization properties of duration-tuned neurons in the inferior colliculus of the big brown bat

Electrophysiological studies on duration-tuned neurons (DTNs) from the mammalian auditory midbrain have typically evoked spiking responses from these cells using monaural or free-field acoustic stimulation focused on the contralateral ear, with fewer studies devoted to examining the electrophysiological properties of duration tuning using binaural stimulation. Because the inferior colliculus (I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2010